PAND: A Distribution to Identify Functional Linkage from Networks with Preferential Attachment Property

نویسندگان

  • Hua Li
  • Pan Tong
  • Juan Gallegos
  • Emily Dimmer
  • Guoshuai Cai
  • Jeffrey J. Molldrem
  • Shoudan Liang
  • Baldo Oliva
چکیده

Technology advances have immensely accelerated large-scale mapping of biological networks, which necessitates the development of accurate and powerful network-based algorithms to make functional inferences. A prevailing approach is to leverage functions of neighboring nodes to predict unknown molecular function. However, existing neighbor-based algorithms have ignored the scale-free property hidden in many biological networks. By assuming that neighbor sharing is constrained by the preferential attachment property, we developed a Preferential Attachment based common Neighbor Distribution (PAND) to calculate the probability of the neighbor-sharing event between any two nodes in scale-free networks, which nearly perfectly matched the observed probability in simulations. By applying PAND to a human protein-protein interaction (PPI) network, we showed that smaller probabilities represented closer functional linkages between proteins. With the PAND-derive linkages, we were able to build new networks where the links are more functionally reliable than those of the human PPI network. We then applied simple annotation schemes to a PAND-derived network to make reliable functional predictions for proteins. We also developed an R package called PANDA (PAND-derived functional Associations) to implement the methods proposed in this study. In conclusion, PAND is a useful distribution to calculate the probability of the neighbor-sharing events in scale-free networks. With PAND, we are able to extract reliable functional linkages from real biological networks and builds new networks that are better bases for further functional inference.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large deviations, Basic information theorem for fitness preferential attachment random networks

For fitness preferential attachment random networks, we define the empirical degree and pair measure, which counts the number of vertices of a given degree and the number of edges with given fits, and the sample path empirical degree distribution. For the empirical degree and pair distribution for the fitness preferential attachment random networks, we find a large deviation upper bound. From t...

متن کامل

Recency-based preferential attachment models

Preferential attachment models were shown to be very effective in predicting such important properties of real-world networks as the power-law degree distribution, small diameter, etc. Many different models are based on the idea of preferential attachment: LCD, Buckley-Osthus, Holme-Kim, fitness, random Apollonian network, and many others. Although preferential attachment models reflect some im...

متن کامل

Topological phase transition in a network model with preferential attachment and node removal

Preferential attachment is a popular model of growing networks. We consider a generalized model with random node removal, and a combination of preferential and random attachment. Using a high-degree expansion of the master equation, we identify a topological phase transition depending on the rate of node removal and the relative strength of preferential vs. random attachment, where the degree d...

متن کامل

An assessment of preferential attachment as a mechanism for human sexual network formation.

Recent research into the properties of human sexual-contact networks has suggested that the degree distribution of the contact graph exhibits power-law scaling. One notable property of this power-law scaling is that the epidemic threshold for the population disappears when the scaling exponent rho is in the range 2 < rho < or = 3. This property is of fundamental significance for the control of ...

متن کامل

Network Evolution by Relevance and Importance Preferential Attachment

Relevance and importance are the main factors when humans build network connections. We propose an evolutionary network model based on preferential attachment(PA) considering these factors. We analyze and compute several important features of the network class generated by this algorithm including scale free degree distribution, high clustering coefficient, small world property and core-periphe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015